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On Weak and Strong Convergence to Equilibrium for
Solutions to the Linear Boltzmann Equation
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This paper considers the linear space-inhomogeneous Boltzmann equation for a
distribution function in a bounded domain with general boundary conditions
together with an external potential force. The paper gives results on strong
convergence to equilibrium, when 7 — oo, for general initial data; first in the
cutoff case, and then for infinite-range collision forces. The proofs are based on
the properties of translation continuity and weak convergence to equilibrium.
To handle these problems general H-theorems (concerning monotonicity in time
of convex entropy functionals) are presented. Furthermore, the paper gives
general results on collision invariants, ie., on functions satisfying detailed
balance relations in a binary collision.
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INTRODUCTION

The linear Boltzmann equation is frequently used for mathematical model-
ing in physics. One fundamental question concerns the large-time behavior
of the function representing the distribution of particles, in particular the
problem of convergence toward an equilibrium solution, which will be
studied in this paper.

We shall consider the space-inhomogeneous transport equation for a
distribution function f(x, v, 7) {describing, for instance, a neutron distribu-
tion) depending on a space variable x = (x,, x,, x3) in a nonmultiplying,
nonabsorbing (i.e., purely scattering) body D, and depending on a velocity
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variable v = (v, v,, v3) € V= R> and time variable te R, . Here we assume
D =D to be a closed, bounded domain in R* with (piecewise) C*-boundary
I'=0D. In the case of an external force a=a(x,v)eR? the transport
equation in the strong form is

d
L tx,v,0)+v-grad, f(x v, )+ -grad, f(x, v )= (7)(x, v, 1)
xeD\T, vel, teR, (N
supplemented with initial data

lilm J(X, v, 1) = Fy(x, v), xeD, veV (2)
110

and some boundary conditions, which in a general case can be written
(ref. 8, p. 107)

n-vl £, v, 1) =

n-v' >

xel, n-v<0, =0 3)

R(x, vV = v) f(x,V, t)|n-v']| dV,
0

Here n=n(x) is the unit outward normal vector at xe I'=0D and R is a
given nonnegative function. For instance, in the case of specular reflection
R(x,V »v)=08(v—v' 4+ 2n(n-v")), where ¢ is the usual Dirac measure, and
in the case of diffuse reflection R(x, v — v)=|n-v| M(x, v), where M(x, v)
is a local Maxwell distribution function.

For a nonabsorbing boundary the function R in (3) is supposed to
satisfy ®

J R(x,v > v)dv=1, xel, n-v>0 (4)

n-v<0

The collision term in (1) can be written®

(O )(x, v, 1)
= JV fg LY (x, v) F(X, V', ) — (X, v,.) (X, v, £)] - B(6, w)dO dl dv, (5)

where ¥ >0 is a known distribution function. Here, v and v, are the
velocities before, and v’ and v/, are the velocities after a binary collision. £
is the impact plane {(r,{): 0<r<R, 0<{<2n)}, which also can be
parametrized by the usual solid-angle representation {(6,{): 0<0<9,
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0<{<2x}. In the cutoff case, 2 is bounded, that is, R < 0, or § < 7/2; but
in the case of infinite-range forces, 2 is the whole plane, ie., 6= 7/2. The
function B is given by B(0, w)=wr|dr/08|, where r=r(6, w) is computed
through the relevant law of interaction, and w=|v—v,|. (For details, see
refs. & and 28; see also refs. 6 and 15).

In many cases of physical interest the function B(6, w) has a nonin-
tegrable singularity for 8 ==/2; for instance, with inverse kth power forces,
where

B(6, w)y=w"b(0) (6)
with = (k — 5)/(k — 1), 3 <k < o0, and®®*®
BO)=O((m/2~6) * D), o,

For that reason most authors have modified the function B, for instance by
cutoffs of Grad type, thus only allowing forces of essentially finite range in
the collision term. (For a discussion of such works, see refs. 21.)

In connection with transforming problem (1)-(3) into a purely integral
form we shall, in the case of an external force a = a(x, v), be concerned with
the solution x=x(t)=x(y,u, 1), v=v(t)=v(y,u, t) to the characteristic
problem of the streaming operator:

dx )
E:v‘\t)a X(O)_y

(7)
d—‘:~a(x \3} v(0)=u
dl (o} > -
In the rest of the paper we assume the following hypothesis.

Hypothesis CP. 1. There exists a unique, locally absolutely
continuous function on R satisfying (7) for a.e. teR.

(2) The Jacobian of the transformation (y,u)r (x(¢), v(¢)),
(y,u)e D x V, is equal to unity for every te R .

By this assumption we can (formally) reformulate Eq. (1) (using
differentiation along the characteristics)

d
= () ¥(2), 1)) = (QF)(x(2), ¥(2), 1) (8)

Remark. The assumption in Hypothesis CP2 is found to be equiv-
alent to the assumption that a(x, v) is divergence-free in v; see ref. 24 for
further references.
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The purpose of this paper is to give results on strong convergence to
equilibrium when ¢ — co, first in the cutoff case (Section 4) and then for
infinite-range forces (Section 5). The proofs are based on a translation con-
tinuity property, together with results on weak convergence to equilibrium.
These results are derived in Section 4 for the cutoff case, and then trans-
formed to the infinite-range case in Section 5. To handle those problems we
present H-theorems with general convex functionals of our solutions, first
for the cutoff case in Section 3, and then for the noncutoff case in Section 5.
We will also in Section 2 present general results on collision invariants for
functions satisfying detailed balance relations in binary collisions. We
collect in Section 1 some of our earlier results on the existence of solutions
to the linear Boltzmann equation with general boundary conditions.

1. PRELIMINARIES

In the case of cutoff in the impact parameters, ie., R< oo or 8 <m/2,
the collision term (5) in Eq. (1) can be separated into two terms, “a gain
term” and “a loss term.” A common way to write the collision term is the
following (see ref. 8, and also refs. 21-24):

(OF Nx, v, 1) = JV KX, vV =v) f(x, v, 1) dv — L(x,v) f(x, v, 1) (1.1)
where
Lix, v)=J K(x, v — V') dv (12)

The collision frequency L is coupled to the functions ¢ and B in (5) by the
relation

L(x,v) = JV L) W(x, v,) B(O, w) dO dl dv, (1.3)

where w=|v—v,|. We assume (for simplicity) that the collision kernel K
vanishes on I” and outside D.

Let I',=I,(v)={xeln-v>0}, I'_=I_(v)={xel;n.-v<0},
where n=n(x) is the unit, outward normal. Let for given ye D\I"_, ue V,

ty=t(y,u)=inf{s>0;x(—s)e '=0D, x(0) =y, v(0) =u}  (1.4)

representing the time for a particle going from the boundary to the point
y following the characteristic curve (see Hypothesis CP).
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In this section the linear Boltzmann equation (1) with (2)-(4) and
(1.1) is studied in two integrated forms, the mild form [Eq. (1.5) below],
and the exponential form (1.6), which both formally can be derived from

the equations above. Using, for re R, a.e. (y, u) = (x(0), v(0))e D x V, the
notation

7 _ JFo(x(—1), v(—1)), 0<r<1,
fly, u, t)—{f(x(—tb), V(=ty), 1—1,), 1>,

where x(—1,)=x(y, u, —1,)e I'_(v), v=v(y, u, —1,), the mild form of the
equation is

S0, 0,0 =T, ¥(0), 0+ [ @@, W@, ds (1)

and the exponential form is

(), (1), 1) =Fx(8), ¥(2), 7) exp [— I Loxts) v ds]
+fot P <_L[ L(x(s), ¥(s)) dS>

xf K(x(1), vV > v(1)) f(x(z), V,T)dv' dr  (L.6)

Remark. One finds that f is a mild solution if and only if the
exponential form holds; see ref. 21, and see also ref. 25.

To construct solutions to the linear Boltzmann equation with external
forces together with general boundary conditions, iterate functions
Jo=SfuX, v, 1), n=0,1, 2,..., are defined recursively as follows:

(@) folx,v,1)=0, xeR’ veV, teR,

Inv’| ! 14 !
(0) fucanw =] LR,V V) £ (X, V, 1) dy
n-v' >0 ,nV|
X, € _(v), n-v<0, teR, (1.7)

(C) fn+1(y’ u, l)
:7n+1(y’ u, ) €Xp [:—J.t L(X(S— 1), v(s —1)) ds:‘

+| " exp [— [ " L(x(s—1), V(s—1)) ds:l L KX(—1),¥' = v(t—1))

xfudx(t—1),v,1)dv dr ae (y,wye(D\I'_)xV, t>0



360 Pettersson

where
e A L R

with x(0)=y, v(0)=u and x,=x(—1,)el _(v), v=v(—1t,). Let also, for
simplicity,

fAx,v,1)=0, xeR*\D, veV, teR., neN

Now we first formulate a monotonicity result for the iterates.**

Lemma. If F,, K, and R are nonnegative functions, then the iterates
[, defined by (1.7) satisfy

foi(X v, )= f(x,v, 1), neN, xeR? veV, reR, (18)

Then we can formulate an existence theorem about mild solutions to
the initial-boundary problem. As usual, L' (D x V) denotes the almost
everywhere nonnegative functions in L'(D x V).

Theorem. Assume that R(x, v;—>v), L(x,v), and K(x,v' —>v) are
nonnegative, measurable functions, such that (4) and (1.2) hold, and
L(x,v)e L, (Dx V). If FoeL' (DxV), then there exists a global mild

solution f(x, v, #) (i.e., defined for 1> 0) to the problem (1)—(3) with (1.1).
This solution satisfies

j Jf(x,v, t)dxdvgj f Fy(x,v)dxdv, teR, (19)

If L(x, v) f(x, v, t)e L', (D x V), then the trace of the solution f satisfies the
boundary condition (3) for te R, ae. (x,v)el' x V.
Moreover, mass conservation, giving equality in (1.9), i.e., with

| ] fevnaxav=] | Fxvdxdv,  rer,  (110)

holds together with unigueness (in the relevant L'-space) under some
(further) assumptions [for instance, if Lf e L', (D x V) and |nv| fe L\(I'x V),
or if the detailed balance relations (1.12), (1.17) below hold.*

In the rest of this paper we require a detailed balance relation (or
reciprocity relation) for binary collisions inside D between particles with den-
sity function f and particles with density function y, ie., we assume that
there exists a function E = E(x, v) >0 such that (see ref. 8, and also ref. 23)

K(x,v—ov') E(x, v)=K(x, V> v} E(x, V') (1.11)
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or
Y(x, v,) E(x, v)=y(x, v) E(x, V) (1.12)

Then by (5) the collision term for E vanishes,
(QE)x(t), v(1), 1) =0 (1.13)

So, the function E is a “collisionless” solution to Eq. (1) if
d
Z(E(x(t), V(1)) =0 (1.14)

ie, if E is constant along the characteristic curves, E(x(1),v(t))=
E(x(0), v(0)) = E(y, u), and if Fy(y, u)= E(y, u), (y,u)e D x V. The typical
case with detailed balance is given by the local Maxwellian function

E(x, V) = po(x) exp( —cm|v|?), xeD, veV (1.15)

where p, >0 is a given function, c is a positive constant, and m is the mass
of a particle, if the other (given) density function is

W(X, v,) = X(x) exp(—cm [V,|?) (1.16)

where X >0 is a given function and m, is the corresponding particle mass.
Here relation (1.12) follows from the energy conservation law for a binary
collision. In Section 2 we will prove that there are (essentially) no other
functions than the Maxwellians (1.15) and (1.16) which satisfy (1.12).

In the rest of this paper we also assume that the function E(x,v)
satisfies a detailed balance relation at the boundary,®**

[nv'| R(x, V' = v, 1) E(x,v)=|nv| R(x, —v—> —V', 1) E(x, —V)
nv' >0, nv<0 (1.17)

One finds, by straightforward calculations, that E(x, v) satisfies the bound-
ary condition (3) if (1.17) holds. Then E(x(#), v(¢)) is a solution to the
linear Boltzmann equation in the strong form (1) with (2) and (3), and also
to the equation in the mild form (1.5) and in the exponential form (1.6).
In the special case of an external potential force a= —grad, ¢(x) we
observe that a solution is E(x, v)=p,-exp{—cm[|v|*+2¢(x)]}, where
m[|v|? + 2¢(x)]/2 represents the total energy of a particle.

Remark. Many of the results in this paper can be generalized to
more general cases with suitable functions E(x, v) and a(x, v). For instance,
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the coefficient ¢ in (1.15) may depend on x, ¢=c(x), if ¢, ¢, and a are
related, such that

v-grad, E+a-grad, E=0

Furthermore, we can also (without any essential changes) study, e.g.,
external electromagnetic forces a(x, v) = a(x) + v x b(x),"” because
[vxb(x)] - grad, E=0; cf. (1.15).

We end this section with a lemma which is important in the following
sections and concerns the mild solutions f9(x, v, ¢) given by initial functions
F{ with a cutof.

Lemma 1.1. Suppose that the detailed balance relations (1.12) and
(1.17) hold. Let (for g=1, 2, 3,...)

Fi(x, v) =min(Fy(x, v), g - E(x, v)), xeD, veV (1.18)

Then the mild solution f9(x, v, ) (given by the theorem above) satisfies
(forg=1,2,3,..)

fix, v, 1)< q-E(x,v), xeD, veV, teR, (1.19)

Proof. Define the iterate functions f9(x,v,?) by (1.7). Then by
induction we find that

FaUx(2), ¥(2), £) < gE(x(2), ¥(1)), neN

using that E is a (mild) solution. Let n— oo; then f47f9 and (1.19)
follows. || :

2. ON THE SUMMATIONAL COLLISION INVARIANTS FOR
THE LINEAR BOLTZMANN EQUATION

One of the basic ingredients in kinetic theory is the concept of collision
invariants. In the case of the linear Boltzmann equation, the problem deals
with finding all functions E= E(v) and ¢ =y(v,), such that the following
relation holds:

E(v) - (v ) =E(V)-¥(vy) 21)

for all vectors v, v, v/, v}, (representing the velocities in a binary collision)
satisfying
MY+ MV, =mv +m,v, (2.2)
and
2 2 __ "2 712
mv|2+m v, > =mV[* +m v
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The problem (2.1) with (2.2) can equivalently be described as that of
finding all functions R=log E(v), S=log¥(v,), such that

R(v)+ S(ve)=R(v') + S(vy) (2.3)

holds for all vectors satisfying (2.2).
Already Boltzmann proved’ that in the case of C>-functions the only
solutions to (2.3) are given by

R(v) = —% V24 b+ (mv)+ C,

(2.4)
am
S(v,)=— 2* Vil?+be (mev,)+C,
so £ and ¢ must be Maxwellian functions,
E(v)=Eyexp [—? [v[>+b- (mv)}
(2.5)

am,

A R N RURN]

Here the constants a, Cy, C,, Ey, o€ R and be R* may depend on the
space variable x and the time variable .

We want to solve the problem (2.3), or equivalently (2.1), with
(2.2) in the case when the equation holds only almost everywhere in
R®x R*x S2 That is a suitable setting for studying the convergence to
equilibrium of L-solutions to the linear Boltzmann equation; see Section 4.

The analogous problem of finding all (summational) collision invariants
for the nonlinear Boltzmann equation has recently been studied in the
a.e. case by Arkeryd and Cercignani.” That is the problem of finding all
functions ¢ such that the equation

V) +d(vy) — (V) — p(vy) =0 (26)

holds a.e. (in R*x R*x S?) for vectors satisfying

VY, =V 4V (2.7)
and

V2 + v, 2= V2 + vl
They proved that the general measurable solution of (2.6) is
#v)=A+B-v+Clv|? (2.8)

with constants 4, Ce R, Be R? (see also ref. 31).
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To get this result, they studied an equivalent problem related to (2.6),
namely seeking for all functions ¢ such that

?(q; +95) = ¢(q,) + ¢(q,) (29)
holds a.. for q,, q, € R® with q; -q,=0. Here
?(q)=¢(E+q)—4() (2.10)
and
vV=E8+q,
Ve=5+4q; (2.11)
Vi=8+q,+q

We will use the results from ref 4 to soive Eq.(2.3) for the linear
Boltzmann equation with two unknown functions R and S. This will be
done by some suitable substitutions from problem (2.3) to (2.6) or (2.9).

We start with the following well-known relations for the velocities in
a binary collision between particles with masses m and m,,,**?

V=v—kwcosf-n=v—x(nw)*n
(2.12)
Vi=V,t+K,wcost-n=v, +k,(nw)-n

where x = 2m,/(m + m,), Kk, =2m/(m + my), w=yv —v,, and
n=(v—v')/|v—v'| = (sin 8 cos {, sin 0 sin {, cos 0).
One finds that v/ =v'(6, {) and v, =v,(0, {) terminate on two concen-
tric spheres with radius xkw/2 and x, w/2, respectively (see Fig. 1 in ref. 22).
In order to transform our problem (2.3), we first write

Vi=v+kq =v+q+oq;

where q, = — (nw)n, and « =x — 1 = (m, — m)/(m, + m). Let q, be defined,
such that

V,=V+(q;+q>
Then q, is orthogonal to q, because
Q42 =q,(v, —v—q;)=q,(—W)—¢qi=(nw)’ — (aw)’ =0
We also see that

V=V, — K, G =V+q,+oq,
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Summarizing, we find that the velocities in a binary collision are
characterized by

V=v+q,+aq;
V,=V+q,+aq, (2.13)
Ve=V+(q;+q,
with o = (m, —m)/(m, + m) and q, L q, (where q, and q, are independent
of the masses m and m,,).

Furthermore, to transform our problem (2.3) to that in ref. 4, let us
take a linear transformation R®— R® (v, v, ) (¥, ¥,) given by

my —

~ o _ Mmy-m

YT Sy Y (2.14)
. « m,—m '
v*zv*—iw—_—v*—m(v—v*)

Let also ¥/ =V+4q, and ¥, =¥+ q,. Then it follows that this transformed
velocities

Vi=V+gq,
Ve=V4+4q, (2.15)
Ve=V+q,+q;

satisfy the following (reduced) moment and energy relations [cf. (2.7)]:
V4V, =V +7,
and
912+ 19, 2= [V2 + [V, (2.16)

One also finds that the velocities ¥ and ¥, terminate on a common sphere
with radius w/2. Then define functions R and .S such that

R¥)=R(v), 8(7,)=5(,) (2.17)
where

ﬁ(;’)=R(V), S‘(V*)=S(v*)

Let us now study the problem of finding all measurable functions R = R(¥)
and §= §(V*) such that the following relation holds:

R@)+53,)— RE) - 3(7,)=0 (2.18)
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ae. in R*xR*x S?, where Eq. (2.15) hold with q, -q,=0. Furthermore,
define (for suitable & e R*) functions

7(q)=R(E+q)— R()
5(q)=S(&+q)—S(8)

Then the problem (2.18) can be written in the following way (for
suitable & e R*): Find all functions 7 and § such that

(2.19)

5(q, +q;) = #(q,) + 5(q2) (2.20)
holds for almost all q,, q, € R* with
q:°¢;=0

Here, with q=g¢,¢, + ¢g,e, + g;e;, where e,, e,, e; give an orthogonal basis
for R3, it follows by (2.20) that

F(q.e1) +7(q.€;) + 5(gse5)
5(q) = F(q.€2) + F(gse5) + 3(q,¢)) (2.21)
F(gses) + (g e1) + 3(q,€,)

Pairwise subtraction in (2.21) gives that
F(g5€3) — 5(g181) = F(g2€,) — 5(g2e,) = F(gses) — 5(g5e5) =0
Then it follows (for a.e. g=g,¢, + g.€, + ¢q;€5) that
$(q)="F(q) (222)
So we get, by (2.20) and (2.22), the following equation:
50, +92)=5q,) +5q2). ¢:°¢x=0 (2.23)

i.e., the same Cauchy equation as in ref. 4.
Therefore, using the results in ref. 4, we find that the measurable
solutions are given by

7(q)=5(q)=B-q+Clql’
with constants Be R?, Ce R. Then, by (2.19) it follows that

R(q)=4,+B-q+Clq)?

- (2.24)
S(q)=4,+B-q+Clg/?
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Furthermore, by (2.17) one finds that also the functions R(v) and
S(v,) are polynomials of second order and then also C’-functions,
satisfying the results in ref. 5 [cf. (2.4)].

Summarizing and using (2.14), (2.17), and (2.24), we have proved the
following theorem on summation invariants for the linear Boltzmann
equation (in the almost-everywhere case).

Theorem 2.1. If (2.3) holds for almost everywhere finite, measur-
able functions in R®x R* x S? with vectors v, v, v, v, satisfying (2.2), then
the functions R and S are given by the formulas (2.4).

Corollary 2.2. The most general solutions of the collision invariant
problem (2.1) with (2.2) are given by Maxwellian distribution functions
(2.5), even if Eq. (2.1) holds only for almost everywhere finite, measurable
functions E and .

3. A GENERAL H-THEOREM FOR CONVEX FUNCTIONS
(IN THE CUTOFF CASE)

Suppose that ¢ =¢(z), R, >R is a convex C'-function, and let
E=E(x,v)>0 be a given function. Then a general (relative) H-functional
HY(f) for the solution f can be defined by

HE(f)(t) = jD jV o(f(% v, () E(%, v) - E(x, v)) dx dv (3.1)

This functional is a generalization of the usual (negative) relative entropy
functional with
p(z)==zlogz and z=f/E (3.2)

(see ref. 23 and also refs. 29, 17, and 20).

In proving a general H-theorem for the functional (3.1), we will
assume that there exist detailed balance relations for the collisions, both
inside D [see (1.11), (1.12)] and at the boundary I'=0D [see (1.17)].
These assumptions are satisfied for almost all physically interesting cases;
see also the results in Section 2.

The following generalized H-theorem for solutions to the linear
Boltzmann equation with general boundary conditions states that (under
the assumptions on detailed balances) the H-functional (3.1) is nonin-
creasing in time with the changes in time bounded (from above) by a
nonpositive term coming from the collision term.

Theorem 3.1. Let f=f(x,v,?) be the mild solution of problem
(1)-(4) with (1.1) and (1.2) given in Theorem 1, and let the detailed
balance relations (1.11) and (1.17) hold together with (1.14), and
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Ee LY (D x V). If HY(F,) exists for a given convex C'-function ¢, R, - R,
then the relative H-functional H%(f)(z) in (3.1) exists for >0 and is
nonincreasing in time. Moreover,

HY O < HYFo)+ [ NYF)(0) s (33)

where
1

N0 =5] [ ] Kowv=v)Eey)

XV, 1) %V, 1)
X[ Ex,v)  E(X V) ]

o () o () e

Proof. The proof follows our earlier proof in ref. 23 for the case with
@(z)=zlog z, z=f/E, so we will here only outline the main steps.
Start with a double cutoff in the initial function

F&i(x, v) =1,E(x, v) + min(Fy(x, v), kE(x, v)), k,j=1,2,3,.. (3.5)
¢ j

and construct iterate functions f*/(x, v, t), n=0, 1, 2,..., by (1.7). Then (by
differentiation along the characteristics) one finds for 7e[0, T], ae.
(x, v)e R* x R?, that

d . ,
= U/ (x(@), ¥(0), )+ L(x(2), V(1) f7(x(2), ¥(2), 1)
= [ K&x(0), v > ¥(1) 5, (x(2), ', 1) v’ (3.6)

Multiplying by ¢'[ f5/(x(¢), v(z), t)/E(x(t), v(t))] and using (1.2) and (1.4),

we get
AT (755(0), ¥(2), 1)
E["’( E(x(1), ¥(1)) >'E("(”’ V“”}

= TKOx(0). ¥ = ¥(0) £ (x(2), ¥ 0

—K(x(1), v(1) = V') fiI(x(2), ¥(2), )]

Feix(t), ¥(t), 1)
(LX), MO, 1)) 4 37
< E(x(1), v(1)) )dv (3-7)
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Then integrating (f{---dydudr (along the characteristics), using the
Green identity and a change of variables (y,u)— (x(¢), v(t)) (see
Hypothesis CP2), we get

L) fV @ (%T—)) E(x,v)dx dv

F&i(x, v)
_JD JV ® <_]Sj(x,—v)> E(x,v)dx dv

- jo L, L | Kx v vy Ex,v) [f RV, 1) SR, Y, r)]

E(x, v') E(x, v)
(R (x v, 1)
e < E(x, v)

) dx dvdv' dr

' frix, v, 1)
_fo L fy¢<m> E(x, V)" (nv) do dv dt (3.8)

where nv>0on I',, nv<0 on I'_, and do is the surface measure.
By induction (n=1,2,3,..) one finds that the following inequalities
hold for £, jeN, (x,v)e Dx V, re R, (see Lemma 1.1):

}E(x, V) SEIx, v, 0) < (k+ 1) E(x, v) (3.9)

Then, letting n — oo and using the dominated convergence theorem, we
find that (3.8) holds also for /*/=1lim, _, ., f*/, due to the fact that ¢’(z)
is bounded for 0< 1/j<z=f/E<k+ 1< .

Now the first term (/;) on the right-hand side in (3.8) (with # — w0),
ie., the collision term, can be written after a change of variables v v/,
v'i—v and using (1.11), (3.4) in the following way:

II(Z)Z%JOILJ J K(x,v—>§’)E(x,v)[fk’j(x’v’r)_fk’j(x’vl’T)}

vy E(x,v) E(x, v')
(%, 1) %V, T) ,
X["’( E(x, v') )””( E(x, v) ﬂ""d”” @
zj' N2 (f%7)(z) de <O (3.10)

where {(a—b)[¢'(b)— ¢’(a)]1 <0 if ¢ is convex.
Furthermore, the second term on the right-hand side of (3.8) (with
n— o), ie., the boundary term, can be found to be nonpositive by using,
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¢.g., the Jensen inequality for the convex function ¢ (see ref. 8, p. 115, and
also ref. 23). Then (3.3) with (3.4) holds for f = f*/, ie.,

jD j o(fJE) Edxdvs jD j (S Edxdv+ jo No(f%I)(t) de
(3.11)

Now letting &, j — oo, and using Fatou’s lemma for the nonnegative
function,

ro-3ee i 1o (8) -+ (9]

U | [ puryaxavay de<timint fo L[] rushaxavav e

k,j— o

we get

SO

tim sup [ Ng(F49)(s) < || MBI di

kj—>o 0

where f = f(x, v, 1) =1lim, , _, ,, f*/(x, v, 1) exists [see Section 1].
Furthermore using the lower semicontinuity property for functionals
of convex functions, ***'* one finds that

j j o(f/E) E dx dv <lim infj f o(f5I/E) E dx dv
DV k,j—o Jpry
By monotone and dominated convergence we also get

lim fD j o(F5/E) Edx dv < jD jy o(F,/E) E dx dv
Vv

k,j— ©

Summarizing, we find that (3.3) with (3.4) holds for f =lim, ;_, ., f kJ and
the general H-theorem is proved. [

Remark. Results on H-functionals with general convex functions
have been obtained in other cases (see, e.g., refs. 20 and 17).

4. ON WEAK AND STRONG CONVERGENCE TO EQUILIBRIUM
IN THE CUTOFF CASE

The question of (weak and strong) convergence (when ¢ — ) to a
stationary equilibrium solution has been studied (among others) by
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Arkeryd, ) Elmroth, " Gustafsson,'® Wennberg, *® Desvillettes,'") and
di Perna-Lions®® for the nonlinear Boltzmann equation. We will study
the problem for the linear Boltzmann equation (1)-(5) with external
potential force

a(x)= —grad, ¢(x), peCYD) (4.1)

general collision function B(0, w), including both soft and hard inverse
collision forces, together with [see (2.5)]

Y(x, v,)=X(x) G(vy),  X(x)eL™(D)

. (4.2)
G(v,)=exp(—cm|v,|7)
(with constant ¢ >0 and mass m, ). Then [see (1.14)] we find that the local
Maxwellian

E(x,v)=E,exp[ —cm|v|* — 2eme(x)] (4.3)

is a stationary solution to (1) if (1.17) holds.

The main result of this section is Theorem 4.6, giving strong
L'-convergence to a Maxwellian equilibrium solution when ¢— oo. The
proof is based on a result about weak convergence to equilibrium, Proposi-
tion 4.4, together with a lemma about translation continuity, Lemma 4.5.
(For discussions on earlier results on asymptotics for the linear equation,
see, e.g., ref. 27, Section XI1.12, and ref. 12; see also refs. 6, 15, 18, and 19 for
further references.)

First we will here prove a uniqueness result for (mild) equilibrium
solutions in the cutoff case. We use the H-functional (3.1) with ¢(z) =27
z=f/E, and the following notations [see (4.2} and (4.3)]:

HO(f) (1) = L) j ) [%’)—)]2 E(x, V) dx dv (4.4)

PN =] | ] KGov=v)Exv)

y fix, v, 1) flx,v 1)
E(x,v') E(x,v)

2

dx dvdv'

=[ [ | ] BO.w)yxv,) Exv)

DYVYV QR

8 f(x, v, t)_f(x, v, 1)
E(x,v) E(x,v)

2

dx dvdv, dodl (4.5)

822/72/1.2-25
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Proposition 4.1. Let f(x,v) be a (mild) equilibrium solution to
the linear Boltzmann equation (with BYE>0 almost everywhere), such
that the H-theorem (3.3) holds for ¢(z) = z?, together with

J j f(x,v)dxdv=j JVE(x,v)dxdv (4.6)

Then f=E a.. in Dx V.

Proof. Use the H-theorem (3.3) and (3.4) with ¢(z)=2’, z=f/E,
and Fy=f [see (4.4) and (4.5)]:

HOG)+ [ PoFIw)de< HO(T)

Here P(f)=0, so P(f)=0, which implies that (a.e. in Dx V'x V' x Q)

o, V) P(x, v) = F(x, v) Y(x, vy,)

Then, by (4.2) and Theorem 2.1 (on collision invariants) it follows that
J(x, v) = Y(x) exp(—cm|v|?)

with some function Y(x). Using that Q(f)(x(z), v(t))=0, one finds that
F(x(t), ¥(1)) is constant along a characteristic curve. Then, by (4.1) and
(4.2), we find that Y(x)= Y, exp[ —2cm¢(x)], where the constant Y,=E,
because of the mass relation (4.6). The result follows. |

Remark 4.2. To handle the problems of weak and strong con-
vergence to equilibrium (when ¢— o0) for general collision functions
B(#, w), including both soft and hard inverse collision potentials, we can
first make a cutoff in the initial data, F{=min(F,, ¢E), g=1,2, 3,.. [see
(1.18)]. Then (see Lemma 1.1) the mild solution f9= f(x, v, t) with initial
function F§ is bounded by gE(x,v), so all higher moments of f are
globally bounded in time

f J (14 v foUx, v, 1) dx dvqu j (1 +v¥)? E(x,v)dxdv, ¢>0
DYy DYV
(4.7)

Furthermore, using mass conservation and the order relation /7 < f9*!, we
observe that a solution f(x, v, ) will converge (weakly or strongly) in L'
to the (right) Maxwellian function E(x, v), when ¢ — o, if (e.g.) the solu-
tion f9(x, v, ¢) converges to some Maxwellian E‘(x, v)= C, - E(x, v) with a
constant C,>0. [C,= | F{|l/IIF,l, using the usual LYD x V)-norm.] This
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statement can be seen in the following way: For given £>0, choose
go = qo(e) such that |F,— F§|| <&/3 for ¢ > q,. Then, by mass conservation,
I|E-E =|f—f9 <¢/3 for all > 0. So, if (for instance) | /4 — E9| < ¢/3
for all 1> T(e), then ||/ — E|| <¢& for t > T(¢). Consequently, we also notice
that (to study convergence to equilibrium) we do not need any entropy
assumption [of type F,log(Fo/E)e LY(Dx V)], ie, we can study the
problem with general initial data.

In proving our results in this and next section, we will use a lemma
concerning lower semicontinuity of a functional of a convex function (of
two variables), appearing in the study of convergence of the collision term
in the H-theorem [see (3.4), (3.5)] (sce also ref. 26 for an analogous case).

Lemma 4.3. Letf,=f7=f9x,v, t)<qE(x,v), n,g=1,2,3,.., and
By=B,\(0, wy=min(B(f, w), N), N=1, 2, 3,.... If the function f, converges
weakly in L' to f = f(x, v, 1), when n — oo, then [see (4.5)] (for fixed ¢, N)

LTI mee Pt L v
<tmint ['[ [ [ ] 8

fuX, v, 7)) fulx, ¥, 1))
E(x, v) - E(x,v")

dxdvdv, dQ dr

XYE dx dvdv, dQ du {4.8)

Proof. Use, for the convex function z(¢, )= (¢ —1n)?% the following
elementary inequality:

(E—n)=(a—b)*+2(a—b)(&—a)+2(b—a)(n—b) (4.9)
with
E=Lf,(V/EWN),  n=f,(V)EW), a=f(V)/EK),  b=f(V)EWV)

Multiplication of (4.9) by ByWE= By(0, w)y(x, v, ) E(x, v) and integra-
tion gives the result; for instance, we have

tim [[[]] &0 (53~ 205) U0 = F)] ax vy, do de=0

by using the weak convergence assumption together with the bounded
functions Byy and f/E. |
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Now we can formulate a result about weak L'-convergence to
equilibrium for our mild solution f, ie., giving

] j g(x, V[ F(x, v, ) — E(x, v)] dx dv = 0 (4.10)
DYV
when t — o0, for all test functions ge L*(D x V).

Proposition 4.4. Let f(x,v, t) be the mild solution to the linear
Boltzmann equation (1.5) with external potential force a [see (4.1)], kernel
function ¥ [see (4.2)], and general collision function B together with
boundary conditions (3) and detailed balance (1.17). Then, for every
Fo(x,v)e L' (Dx V), the solution f(x,v,) converges in weak L'-sense
(4.10), when t— oo, toward a unique Maxwellian function E(x,v) [see
(4.3)] with

f j E(x,v)dx dv=f '[ Fy(x, v) dx dv

Proof. First approximate the initial function F, with F§ [see (1.18)];
see Remark 4.2. Then, using the H-theorem, Theorem 3.1 with @(z)=2z%
z=f/E, and f = f7<gE (Lemma 1.1), we get

HP()0+ [ Po(f7)(5) de <HP(FY) (411)

where P(f9) =0 [see (4.4) and (4.5)]. So the integral j'(‘;o Pr(fi)(t)dr
converges, and there is an increasing sequence {7,}:° such that

lim PL(f?)(,)=0 (4.12)
Let
SuX, ¥) =[x, v, 1,,) (4.13)

Then, by a well-known compactness lemma using [see (4.7)]
{1 +v) f,dxdv<C,and [[ f,log(f,/E) dx dv < C (see Arkeryd" and
also refs. 23 and 24) there is a subsequence { f,,}7° ; such that f, converges
weakly to a function f(x, v) eL' (Dx V) when i— .

Now, using Lemma 4.3 concerning lower semicontinuity of convex
functionals, it follows that P.(f)=0. Then, by Theorem 2.1 and (1.10), we

get
Ffx, ) =E(x,v)=C,- E(X,V)
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with a constant C, = ||F{||/|Foll >0, and the Maxwellian function E [see
(43)].

Finally we prove that the solution f9(x,v, ) converges weakly in
L'-sense toward E%(x,v) when t— co. Here we use a contradiction
argument.’" Together with Remark 4.2, this completes the proof. |

In order to take the step from weak to strong L'-convergence (when
t — o0), we will now prove a result, Lemma 4.5, concerning translation con-
tinuity of our (mild) solution. Then Theorem 4.6, on strong convergence to
equilibrium, will follow in the same way as earlier results by Carleman”
and Gustafsson’® for the nonlinear space -homogeneous Boltzmann
equation.

Lemma 4.5. Let f(x,v, ) and f, ,(x, v, t) be the mild solutions of
the linear Boltzmann equation (1)—(5) with initial data Fy(x,v) and
Fo(x+h, v+ u), respectively. Then

lim f X ¥, )= f(%, v, 1) dX dv=0 (4.14)

(h+u)—0Jp
uniformly in time, te R

Proof. Let ¢>0 be given. We will approximate the functions in two
steps. First approximate the initial function F, by a continuous function
F§ . with compact support and bounded by gE(x, v), such that [with the
usual L'(D x V)-norm]

1F§.—Foll<€&/3,  g>qo, some go=qo(e) (4.15)

This can be done in the following way: Let first FJ=min(F,, gE) for
lv|<q and Fi=0 for |v|>¢q, g=1,2,3,... Now Fg » Fy, when ¢ — o,
and (e.g.) | Fg— Foll < /9 for g> g, some ¢, = g,(¢). Then use convolution
to get a new continuous (approxunatwe) function F{ §.c» such that
1Fg . —Fgl <¢/9. So, with F§_ =min(Fg, qE), and g large enough, the
statement (4.15) follows.

Next, extend the function F{, to a continuous function, defined also
in a neighborhood of DxV,, where V, o= {v:IvI<q}, such that F{§,
vanishes outside this extended domain (Dx V) Then, using that this
continuous function with compact support is uniformly continuous in
D x I7q, we can find (for given ¢>0) a 0 =20(¢) >0 such that for all h, u

with h%2 4+ 12 < 6% and x, verV

|F§ (x+hv+u)—F§ (x,v)] < (¢3)C, (4.16)
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with a constant C’qzmin(E(x, v)/|E|)>0. Now we get by (4.16) that (for
x,veDx V,)

|F§(x+h,v+u)—F§ (x,v)] <(¢/3) E(x, v)/| E]| (4.17)

Then, using the linearity of the Boltzmann equation together with mass
conservation, we find from (4.17) that (for x, ve D x I7q, and all ¢ > 0) there
holds

| ou(X: ¥, 1) = (%, v, 1) < (&/3) E(x, v)/| E| (4.18)

where f} , and /¢ are the corresponding mild solutions (with initial data
F§.and F§ ). By (4.18) it follows that || f} ,— f“ll <&/3 holds, uniformly
in time ¢>0. Summarizing and using (4.15), we find that |[f, ,—f] <e
holds for all 1>0, and all h, u with h*+ 4> <42, where f, , and f are the
solutions with initial functions Fy(x +h, v+ u) and Fy(x, v), respectively. So
the translation continuity property (4.14) follows. ||

Remark. We observe that the limit (4.14) is also uniform in the
cutoffs. This is so, because the estimate || f;, , — fIl <& holds independently
of the cutoff radius; see also Section 5.

Finally we come to the main result in this section concerning strong
convergence to equilibrium in the cutoff case.

Theorem 4.6. Let /= f(x,v,t) be the mild solution to the linear
Boltzmann equation in the case of external potential force (4.1), general
collision function B (including both soft and hard inverse potentials), and
(Maxwellian) kernel function ¢ =(v,) [see (4.2)], together with general
boundary conditions (3) and detailed balance relation (1.17). Then, for
every Fy(x, v)e L' (D x V), the solution f(x, v, f) converges strongly in L',
when t— oo, toward a unique Maxwellian function E(x,v), see (4.3)
(where | E|| =||Foll), ie.,

lim j f 1£(%, v, ) — E(x, V)| dx dv=0

t—> 0

Proof. Use the weak convergence result, Proposition 4.4, together
with the translation continuity property, Lemma 4.5. Then the theorem
follows; see refs. 7 and 16 and also ref. 13. |

5. THE CASE OF INFINITE-RANGE FORCES WITHOUT
CUTOFF

In this section the linear Boltzmann equation is considered without
cutoff in the collision term, i.e., including infinite-range forces. It is studied
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in the following weak form, which can formally be derived from Eq. (1)
with (2) and (5):@%

JD L g(x, v, 1) f(x, v, 1) dx dv
=L,J g(x, v, 0) Fo(x, v) dx dv

+ fot '[D JV I:v - grad, g(x, v, 1) +a(x, v) grad, g(x, v, 7) +§; g(x, v, r)]
x f(x,v,1)dx dvdr

L s

X B(0, w) Y(x,vy) f(X, v, 7)dx dvdv, df d{ dr (5.1)

for all test functions ge Cy* (for simplicity). Here C§®={geC">:
g(x,v,1)=0, xe I'=0D}, where

cre ={gec1wx Vx [0, 0)): gl =sup g(x, v, 1)

0
+sup ‘a—t g%, v, 1) + suplgrad, g(x, v, 1)

+ sup|grad, g(x, v, #)| < oo} (5.2)

The mathematical problems in the noncutoff case come from the non-
integrability of the function B(6, w) when 6 — n/2 (see the Introduction).
Here we study (for simplicity) inverse kth power potentials with collision
function (see the Introduction)

B(#, w)y=w'b(0), w=lv—v,], y=(k-=5)/k-1), 3<k<on (53)

where [§/% b(0) df = oo, [§* b(6) cos 8 df < oo.
Then we have the following result on the existence of L'-solutions:®®

Theorem E. Let the assumptions on (x,v,) [see (4.2)] and
B(6,w) [see (53)] together with (1.17) be satisfied. Suppose
Fylog(Fy/E)e L'(Dx V). Then there exists (for ¢>0) a solution
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f(x, v, t)e L' (D x V) to the linear Boltzmann equation in the integral form
(5.1). The solution conserves mass,

jD Jyf("’ v, 1) dx dv=f fVFo(x,V)dx dv (54)

Higher moments are globally bounded in time for hard potentials (k> 5)
and locally bounded for soft potentials (3 <k <35).

Remark. The results in Theorem E can (in some cases) be extended
to very soft potentials; see ref. 9 for 2 <k <3, and ref. 10 for 9/5<k<2.

For our main result in this section, Theorem 5.3, on (weak and) strong
convergence to equilibrium for our solutions, an H-theorem in the infinite-
range case will be used [see (3.1)].

Proposition 5.1. Let f(x,v,t) be the L'-solution to Eq.(5.1),
given by Theorem E and constructed as a limit of mild (cutoff) solutions.

A. If p:R, >R is a convex C'-function, and H(F,) exists [see
(3.1)], then

HY(f) )< HYF,), >0 (5.5)

B. In particular, if ¢(z)=2z% z= f/E, with f = f9(x, v, t) the solution
belonging to F§ [see (1.18)], then [see (4.4) and (4.5)]

HPSNO+ [ P de < HP(FY) (56)

Proof. Suppose f,(X, v, t) is the mild solution with cutoff radius r, =n,
n=1,2,3,.. Then, by a compactness lemma,*® there is a subsequence
{/. n,} converging weakly to a solution f(x, v, ¢) of the infinite-range equation
(5.1). From here statement A follows by the lower semicontinuity property
for convex functionals (of one variable), together with the H-theorem in the
cutoff case, Theorem 3.1.

For statement B use for the collision term Lemma 4.3 concerning a
lower semicontinuity property for convex functionals (of two variables).
Then [using bounded collision functions By=min(B, N), and letting
N — oo; see also ref. 26], we get

Nl B |G -2
< im_ tim i [[[]] Bus

The proposition follows. |

2

2

Su(V')  f(¥)

E(v') E(v)




Linear Boltzmann Equation 379

Remark 5.2. By the proof of Proposition 5.1 the functions f, (X, v, t)
converge weakly in L' to f(x, v, t), when j — co. Now, using that the trans-
lation continuity holds independently of the cutoffs (Lemma 4.5), we find
that the convergence (in fact) is strong in L'-sense,

[ [ 1y 0= fx v, i dxdv -0, jooo
DYV

We can now formulate the main result of this section, concerning
strong convergence to equilibrium of our solutions in the infinite-range
case, for both soft and hard collision potentials, 3 <k < c0.

Theorem 5.3. Let f(x, v, t) be the solution (given by Theorem E)
to the weak form of the linear Boltzmann equation (5.1) in the infinite-
range case, with ¢ =y(v,) and B given by (4.2), (5.3), together with
external force a [see (4.1)] and general boundary function [see (3), (4),
and (1.17)]. Then for every Fy(x,v)eL' (D x V) the solution f(x,V,1)
converges in strong L'-sense (when t—oo) to a unique Maxwellian
function E(x, v) [see (4.3)] with

j J E(x,v)dx dv= L) j,, Fo(x,v)dx dv

Proof. First approximate F, in L' with F{=min(F,, gE), g=1,2,3,...
(see Remark 4.2). Next use the H-theorem (Proposition 5.1B) with ¢(z) = z*
to prove uniqueness of the stationary solution E4(x,v) (Proposition 4.1).
Then, continuing as in the cutoff case, the weak convergence result follows,
using (among others) the H-theorem, Proposition 5.1B. Finally, we get
strong L'-convergence to the Maxwellian equilibrium solution when ¢ — oo
(see the proof of Theorem 4.6). For this we use the weak convergence
result, together with the translation continuity property, Lemma 4.5, where
the estimates || 7, — /™| <& hold independently of the cutoff radius »; (see
Remark 5.2 and the Remark after Lemma 4.5). |}

REFERENCES

1. L. Arkeryd, On the Boltzmann equation, Arch. Rat. Mech. Anal. 45:1-34 (1972).

2. L. Arkeryd, Intermolecular forces of infinite range and the Boltzmann equation, Arch. Rat.
Mech. Anal. 77:11-21 (1981).

3. L. Arkeryd, On the long time behaviour of the Boltzmann equation in a periodic box,
Technical Report 23, Department of Mathematics, University of Goéteborg (1988).

4. L. Arkeryd and C. Cercignani, On a functional equation arising in the kinetic theory of
gases, Rend. Mat. Acc. Lincei 9:139-149 (1990).

5. L. Boltzmann, Vorlesungen iiber Gastheorie, I (Verlag von Johann Ambrosius Barth,
Leipzig, 1896). :

6. N. Bellomo, A. Palczewski, and G. Toscani, Mathematical Topics in Nownlinear Kinetic
Theory (World Scientific, Singapore, 1989).



380 Pettersson

7.

8.

9.

10.

1.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

T. Carleman, Problemes mathématiques dans la théorie cinétique des gaz (Almqvist-
Wiksell, Uppsala, 1957).

C. Cercignani, The Boltzmann Equation and Its Applications (Springer-Verlag, Berlin,
1988).

F. Chvala, T. Gustafsson, and R. Pettersson, On solutions to the linear Boltzmann equa-
tion with external electromagnetic force, SIAM J. Math. Anal. 24:583-602 (1993).

F. Chvala and R. Pettersson, Weak solutions of Boltzmann equation with very soft
interactions, Preprint, Department of Mathematics, Chalmers University of Technology,
1992-42.

L. Desvillettes, Convergence to equilibrium in large time for Boltzmann and BGK
equations, Arch. Rat. Mech. Anal. 110:73-91 (1990).

T. Dlotko and A. Lasota, On the Tjon-Wu representation of the Boltzmann equation,
Ann. Polon. Math. 42:73-82 (1983).

N. Dunford and J. T. Schwartz, Linear Operators I (Interscience, New York, 1958).

T. Elmroth, On the H-function and convergence towards equilibrium for a space-
homogeneous molecular density, SIAM J. Appl. Math. 44:150-159 (1984).

W. Greenberg, C. van der Mee, and V. Protopopescue, Boundary Value Problems in
Abstract Kinetic Theory (Birkhduser-Verlag, 1987).

T. Gustafsson, Global L?-properties for the spacially homogeneous Boltzmann equation,
Arch. Rat. Mech. Anal. 103:1-38 (1988).

R. Hlner and H. Neunzert, Relative entropy maximization and directed diffusion
equations, Preprint, Department of Mathematics, University of Victoria (1990).

H. G. Kaper, C. G. Lekkerkerker, and J. Hejtmanek, Spectral Methods in Linear
Transport Theory (Birkhduser-Verlag, 1982).

A. Lasota and M. Mackey, Probabilistic Properties of Deterministic Systems (Cambridge
University Press, Cambridge, 1988).

K. Loskot and R. Rudnicki, Relative entropy and stability of stochastic semigroups, Ann.
Polon. Math. 53:139-145 (1991).

R. Petterson, Existence theorems for the linear, space-inhomogeneous transport equation,
IMA J. Appl. Math. 30:81-105 (1983).

R. Pettersson, On solutions and higher moments for the linear Boltzmann equation with
infinite-range forces, IMA J. Appl. Math. 38:151-166 (1987).

R. Pettersson, On solutions to the linear Boltzmann equation with general boundary
conditions and infinite range forces, J. Stat. Phys. 59:403-440 (1990).

R. Pettersson, On the linear Boltzmann equation with sources, external forces, boundary
conditions and infinite range collisions, Math. Mod. Meth. Appl. Sci. 1:259-291 (1991).
R. J. di Perna and P. L. Lions, On the Cauchy problem for Boltzmann equations, global
existence and weak stability, Ann. Math. 130:321-366 (1989).

R. J. di Perna and P. L. Lions, Global solutions of Boltzmann equation and the entropy
inequality, Arch. Rat. Mech. Anal. 114:47-59 (1991).

M. Reed. and B. Simon, Methods of Modern Mathematical Physics 111, Scattering Theory
(Academic Press, New York, 1979).

C. Truesdell and R. G. Muncaster, Fundamentals of Maxwell’s Kinetic Theory of a Simple
Monatomic Gas (Academic Press, New York, 1980).

J. Voigt, Functional analytic treatment of the initial boundary value problem for
collisionless gases, Habilitations-Schrift, Universitdt Miinchen (1980).

B. Wennberg, Stability and exponential convergence in L? for the spatially homogeneous
Boltzmann equation, Nownlinear Analysis, Meth. Appl. 20:935-964 (1993).

B. Wennberg, On an entropy dissipation inequality for the Boltzmann equation. C. R.
Acad. Sci. Paris, 315 (Série 1):1441-1446 (1992).



